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9.1  Let C = total cost. 1 
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 However, fixed costs = 180 so when q = 0, C = 180: 
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 Therefore the total cost function is given by: 
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9.2 Consumer surplus = f q dq q q q dq q
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 where q0  quantity demanded at a price of £34 
 

 To find q0
 when p = 34:      34 70 9 2  q q                   q = 3   or   q = 12 

 
 To be economically meaningful q = 3. 
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9.3 (i)                             dqp 5200   (1)              
 

                                     
2232 sqp    (2) 

 
  For equilibrium: sd qq    
   

One way to solve this set of three linear equations in three variables, sd qq ,  and p, is to 

substitute sq for dq from the equilibrium condition in (1): 
  
                                             sqp 5200            (1a) 
 
  Substitute for p from (1a) in (2) and rearrange: 
 

                                             025168 2  ss qq  
 

Solving this quadratic equation gives 8sq  as the economically meaningful solution. 

From the equilibrium condition 8dq . When 8dq , from the demand function, 

p   200 5 8 160( ) . When the market is in equilibrium 8 units of output will be sold at 

a price of 160. 

 

 (ii) Let R = total revenue and C = total cost.   R C  
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Since a perfectly competitive market became a monopoly, the marginal cost curve of the 

monopolist is given by: 2 
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  The profit function will be given by: 
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  First-order condition for a stationary point: 
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  Second-order condition: 
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  Profit is maximised when q = 7 and p   200 5 7 165( ) .3 

 
  Under perfect competition:   
 
  Consumer surplus = 1

2
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  Under monopoly: 
  
  Consumer surplus = 1
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  Change in consumer surplus = 1225 160 375. .    4 
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